
1

 Jay Sitaraman Beatrice Roget Vinod Lakshminarayan
Parallel Geometric Algorithms, LLC Science and Technology Corporation

Andy Wissink
Aviation and Missile Research, Development and Engineering Center

Moffett Field, CA

Progress in Strand/Cartesian
Overset CFD simulations using
CREATE™-AV Helios

Distribution Statement A, Approved for public release; distribution unlimited.
Review completed by the AMRDEC Public Affairs Office (PR3051, 09 May 2017)

Advanced Modeling and Simulation Seminar Series
NASA Ames Research Center, May 25, 2017

2

•  Introduction
•  Motivation for this work
•  Methodology

–  Strand mesh generation
–  Domain connectivity for colliding strands

•  Results
–  Single-bladed rotor
–  DLR-F6 from DPW-III
–  UH60 Fuselage
–  Common Research Model
–  UH-60 fuselage + rotor

•  Concluding observations

Outline

3

•  High-fidelity rotorcraft simulation for government and industry

•  Introduces strand grid framework in v7 released in 2016

Dual Mesh Paradigm

Near-body – mStrand, Overflow, FUN3D, …
Cartesian off-body - SAMCart

CFD/CSD Coupling

Adaptive Mesh Refinement

To resolve wake

RCAS and CAMRAD Structural
Dynamics and Trim coupling

Advanced Software Infrastructure

Python-based infrastructure readily
supports addition of new software

HPCMP CREATETM AV Helios Helicopter Overset Simulations

High Performance Computing

Runs on HPC hardware with
focus on parallel scalability

Rotor-Fuselage and Multi-rotor
moving mesh support

Moving Body Overset

mStrand
near-body
solver

SAMCART
off-body solver

Helios Code

4

Motivation for Dual-Mesh

 Body-conforming “near-body”
–  Resolve near-wall viscous flow
–  Complex geometries

Cartesian “off-body”
–  Computationally efficient
–  High order accuracy
–  Adaptive mesh refinement

à Preserves wake to enable
accurate predictions:

•  Interactional aero
•  Noise
•  Ground effect

5

Near-Body Mesh Types

Unstructured mesh:
–  More automated mesh generation
–  Generally slower than structured grid

counterparts
–  Scalability problems for domain

connectivity on very large-scale

Structured mesh:
–  Mesh generation can be tedious for

complex geometries
–  High-order flow solution possible
–  Scalability problems for domain

connectivity on very large-scale

6

Near-Body Mesh Types

–  More automated mesh generation
–  Not easily amenable to high-order flow

solution
–  Poor scalability for domain connectivity

on very large-scale

–  Mesh generation can be tedious for

complex geometries
–  High-order flow solution possible

Strand mesh:
Semi-structured

Scalable domain
connectivity
(compact storage)

7

Strand/Cartesian Overset Meshes

•  Strand meshes allow parameterized
representation of volume meshes:
–  surface tessellation
–  pointing vectors
–  normal distribution

Off-body:
Cartesian AMR

Surface Tesselation:
Tri/quads

Near-Body:
Strand

Strand Mesh Structure:

•  Strands provides a pathway to
–  Automated scalable volume

meshing from CAD/surface
tessellation

–  Scalable Domain Connectivity
 (compact mesh in each proc.)
–  Efficient line-based solver

technology

Strand unit
vector

Normal cell
distribution

Single-level
Strand

Surface cell

Multi-level
Strand

Example: 50 million node grid:
•  Unstructured à 4.2 GB
•  Single-level Strand à 80 MB (50x less)
•  Multi-level with CRS à 100 MB (40x less)

8

Strand/Cartesian Overset Meshes

•  Strand meshes allow parameterized
representation of volume meshes:
–  surface tessellation
–  pointing vectors
–  normal distribution

Off-body:
Cartesian AMR

Surface Tesselation:
Tri/quads

Near-Body:
Strand

Strand Mesh Structure:

•  Strands provides a pathway to
–  Automated scalable volume

meshing from CAD/surface
tessellation

Strand unit
vector

Normal cell
distribution

Single-level
Strand

Surface cell

Multi-level
Strand

NB meshing

OB meshing

Domain
Connect. AMR Flow

solution

Fully automated tasks

Example: 50 million node grid:
•  Unstructured à 4.2 GB
•  Single-level Strand à 80 MB (50x less)
•  Multi-level with CRS à 100 MB (40x less)

9

•  Need an efficient flow solver that takes advantage of the strand
structure.

–  mStrand (Lakshminarayan et al., AIAA 2015, AIAA 2016, AIAA 2017,
Computers & Fluids 2017, AHS 2017)

•  Mesh generation
–  Have to develop methods to place strands in actual

geometry with concave, convex and concave/convex
features

•  Need an efficient domain connectivity for intra-mesh (within a

strand mesh), inter mesh (between various meshes) and inter
domain (between Strand and Cartesian)

Strand Meshing/Solution
Challenges

10

Meshing and Domain Connectivity
•  Proposed by R. Meakin et.al

–  Sprout code by W. Chan (2007)
•  Multi-strand mesh generation

–  MOSS code by B. Haimes (2013-)
–  mStrandGen code by B. Roget (2014-)

•  Scalable domain connectivity
–  OSCAR by J. Sitaraman (2012-)

Solver technology
•  Many research efforts by A. Katz et al.

–  Strand3D, Strand3DFC (2008-2015)
•  Production code by V. Lakshminarayan

–  mStrand (2015-), integral part of Helios V7
•  Current work, improvements to meshing and domain connectivity,

towards achieving automated solutions for real problems.

History of Strand Technology

15+ conference papers
8 journal articles

V

Multiple vectors/
node

Visibility
problem

11

Meshing Method

12 12

Meshing Method Overview

In order to allow meshing of complex geometries, Strand Meshes are
built in 2 steps:

1.  Inner layer, can be very close to surface (covering boundary layer):

must be fully closed (no self-intersection)

2.  Outer layer, extends larger distance to allow interfacing with
Cartesian grid: can be self-intersecting

Inner layer:
•  fully closed Strand mesh
•  may consist of a few

levels (< 5)

Outer layer:
•  Extrusion from 1st layer
•  intra-mesh domain

connectivity to clear
self-intersections

13 13

•  Typically single-level strands
for simple geometries:

•  Initial segment can be multi-stranded
to solve visibility/coverage issues

•  Can be segmented into several levels
for more complex geometries:

Inner Layer

Visibility
problem

?

14 14

Meshing Method per Level

 Based on the Isosurface of Minimum Distance Field
= locus of points equidistant from base surface

L

Isosurface IL

Idea: connect surface node to its
closest point on IL
à strands in concave areas are
automatically bent:

Closest Vertex on the Isosurface of Distance Field (CLOVIS)
Sitaraman, et al. "Progress in Strand Mesh Generation and Domain Connectivity for
Dual-Mesh CFD simulations." 55th AIAA Aerospace Sciences Meeting, 2017

15

1.  Strands created following local best visibility direction, length L (method 1)
2.  Distance from strand tip to surface computed, D
3.  If D<L, strand direction re-computed by finding closest point to iso-surface of

distance at L (method 2)
4.  Strand length reduced by fixed amount for all strands

Isosurface of Distance at L

Local
normal

D < L
à method 2

D = L
à method 1

Closest pt. on IL

IL

Multi-strand for very
convex edges (initial layer)

After strand
shortening

Clovis Method (1)

16

Problem definition

•  Minimize strand length, constraining the strand end point to be at a
distance of L from the surface. Optimization problem with a strong non-
linear constraint.

•  Can solve it approximately using a tessellated distance field iso-surface
(Wissink 2014). Vertex location is sensitive to the size of iso-surface
tessellation. Need an exact solution to be robust.

•  Solve the continuous optimization problem, for each surface point 𝑥↓0 
min┬𝑔(𝑥)=𝐿  (|𝑥− 𝑥↓0 |),  𝑔(𝑥)= min┬𝑦∈𝜕Ω  (|𝑥−𝑦|) 

•  Requires a distance field evaluation routine to compute
 𝑔(𝑥)= distance between point 𝑥 and the surface tessellation. and the surface tessellation.
 Use custom optimization algorithm (in the paper)

CLOsest Vertex on the
ISo-surface of Distance Field

L

Clovis Method (2)

17 17

Initial
guess

Closest
point

Clovis Method (3)

18 18

Problem:
•  when body thickness has abrupt variations,

CLOVIS can yield invalid mesh (surface
intersection)

closest point on IL

Surface point A

L

Isosurface IL

d1

d2 < d1

Direction of Best Visibility

Solution:
•  Use Direction of Best Visibility (minimizes

max. angle with neighbor face normals)

Flat surface:
Full visibility

Convex node Concave node
Partial visibility

If CLOVIS solution is
outside visibility cone:
Use best visibility
direction instead

19 19

Initial Strand mesh obtained from CLOVIS / best
visibility direction:

•  can have invalid volumes

•  often presents too much point clustering on the
envelope surface (poor stretch ratio)

Elastic Smoothing on the
Isosurface of Distance

Apply elastic smoothing algorithm,
assuming each edge is an elastic spring
with zero rest length, with constraints:

1.  Strand extremity remains on
Isosurface of Distance at L

2.  Strand remains within visibility cone

Spring stiffness such that nodes are at rest for very
short strand lengths

IL

After strand
shortening

20 20

Elastic Smoothing on the
Isosurface of Distance

No constraint

Visibility Constraint

Angle Constraint

21 21

1.  Find Best Visibility direction for each
surface node

2.  Find Closest point on IL for each surface
node (CLOVIS method)

3.  Apply smoothing using spring analogy
under constraints:
•  Strand ends remain on IL
•  Strands remain within their cone of

visibility

Meshing Method:
Summary

L
à  Initial Strand mesh:
 CLOVIS if within cone of vis.,
 best visibility direction if outside

22 22

Mesh Quality Improvement
Robin Fuselage

Side view

Rear view

CLOVIS method CLOVIS method + elastic smoothing

23

•  Outer layer (single-level) built by simple extrusion from last level
•  Complex geometry cannot be meshed without self-intersecting meshes.

–  Requires solution to strand collision to find which cells within the
strand mesh solve, interpolate or are removed.

–  Key new technology developed in Helios V7

Complex Geometries with
Self-Intersecting Meshes

24

Domain Connectivity for
Self-Intersecting Meshes

OSCAR (Overset Strand Cartesian Assembler)

•  Domain connectivity package specific for
Strand/Cartesian grid systems and that uses
compact grid description for scalable searches
(Sitaraman 2012, 2013)

•  Expanded to solve intra-mesh domain

connectivity robustly

•  ADT based search that performs rapid

exclusions and exact face-edge intersection
checks.

•  Complex logic for clearing intersections

•  Additional challenges (orphan creation)

25

Intra-Mesh Domain Connectivity

Before domain connectivity

After domain connectivity

26

Issues near shallow-angle
strand intersections

•  Fringe points that
cannot find any valid
donor (i.e. a cell with
field points)

•  Cartesian donors could
be facilitated if the AMR
mesh can penetrate all
the way, but it is
undesirable because of
the anisotropy

27

Solution to orphan points

Least-square interpolation using point cloud (2nd order accurate)

28

 Results

29

Overview

1.  Hovering 1-bladed rotor
–  Simple blade geometry

2.  Simple Fuselages (Robin w and w/o pylon)

3.  Moderately complex fuselage (DLR-F6)

4.  UH-60 Fuselage
–  With and without geom. details

5.  High-Lift CRM
–  multiple complex meshes body/flap/slat
–  Both inter-mesh and intra-mesh connectivity

6.  Rotor + Fuselage in Trimmed flight
–  Elastic blades (coupling with CSD)
–  Comparison with flight test data

All volume meshes used for the results are auto generated

30

Near-body strand solver (mStrand)

•  Fully parallel 2nd order vertex centered FV solver
•  Surface grid can be quads or/and triangles
•  General prismatic mesh in normal direction

•  3rd order MUSCL reconstruction + Riemann solver

•  2nd order full Navier-Stokes term

•  1st order implementation of SA turbulence model
•  Moving/deforming meshes with ALE and discrete GCL
•  Can handle multiple strands/node
•  Linear solver using preconditioned GMRES

Off-body adaptive Cartesian Solver (SAMCart)
•  Parallel mesh adaptive capability by SAMRAI library
•  Each grid block solved using CART

•  Higher order central difference scheme
è  6th order with 5th order dissipation for inviscid term

è  4th order for viscous terms

•  SA turbulence model with DES capability
•  LUSGS or diagonalized ADI implicit operators

Berger-Colella style block
structured AMR

Solution process in Helios

31

Case 1: Hovering Rotor Wake
Validation

• Aspect ratio à 9.12

•  Tip Mach à 0.26

•  Tip Re number à 272,000

• Collective à 4.5o

One bladed rotor tested by Martin et al. Quad + Tri surface mesh
2.7 million grid points

Vorticity Magnitude Iso-surface of Q-criterion colored
by vorticity magnitude

32

One bladed rotor tested by Martin et al.
Swirl velocity profile across the center of vortex

• Vortex strength preserved well for long time
• Wake contraction and vortex dissipation rate predicted accurately

PIV
measurements

Case 1: Hovering Rotor Wake
Validation

33

Robin Fuselage no pylon
•  Generic analytically defined

fuselage

•  Simple geometry, with gentle
convexity and concavity

•  can generate strand meshes to
arbitrary distance away from the
body

Coarse (0.6M NB + 3M OB) Medium (2.4 M NB + 8 M OB) Fine (10M NB + 35 M OB)

34

Robin Fuselage no pylon

Upper
surface

Lower
surface

Coarse

Medium

Fine

M=0.1, dt=5e-5, time-accurate, unsteady
residual converged to 6 orders every time step

35

Robin Fuselage with pylon

Intersecting mesh generated by extending a non-intersecting mesh at a smaller
distance from the wall along the strand-vector

Self-intersections resolved at run-time using OSCAR domain connectivity

Objective: Compare solutions for the same geometry using intersecting and non-
intersecting meshes

Non-intersecting mesh Intersecting mesh

36

Upper surface

Lower surface

Non-intersecting

Intersecting

Robin Fuselage with pylon

37 37

Wing-Fuselage junction

Wing lower surface

DLR-F6 Fuselage From
DPW Series

More complex than ROBIN fuselage

Concavities at wing fuselage junction

Concave-convex intersection at the trailing edge

38 38

DLR-F6 Fuselage
 Mesh generation

Non-intersecting mesh Intersecting mesh

•  Strand meshing technique can generate valid multi-level strand meshes up to 1/6th of
wing mean chord. Most commercial mesh generators can only generate prismatic
meshes for this geometry to 1/20th of the mean-chord.

•  Intersecting meshes generated by extending a 1/100th chord mesh to 1/6th chord

39 39

DLR-F6 fuselage Flow solution

Solution based AMR tracks wake to 10 aircraft
lengths

Drag converges to within 1 count of final in about
5000 iterations for both non-intersecting and
intersecting meshes

40 40

DLR-F6 Fuselage Pressure
contours

Lower surface

Non-Intersecting Mesh

Intersecting Mesh Intersecting Mesh

Upper surface

Non-Intersecting Mesh

41 41

DLR-F6 Fuselage CL/CD and
Polar

CL/CD at α=0 from DPW-II/III

 Drag Polar

CL/CD evolution for α=0

42

Case 2: UH-60A Fuselage

Real Fuselage test case with many
geometric complexities

Non-intersecting mesh cannot be
produced for more than 0.5 inch
strand length from surface.
blade chord = 20.76 inches

Intersecting mesh generated by
extending a valid strand mesh at 0.5
inch to a distance of 10 inches.

43

UH-60 Configurations

Clean

Strut:
-  Landing struts
-  IR suppressors
-  Other small

details near the
engine inlet

Questions:
-  Can we mesh and solve both configurations using Strand/Cartesian

approach?
-  Can we predict the drag increment in the Strut configuration compared to

clean?

44

UH-60A Fuselage Domain
Connectivity

Parallel Domain connectivity
(Near-body to Off-Body
and Intra-mesh)

45

UH-60A Flow Solution:
Fuselage with Struts

High speed forward flight

-  Advance Ratio = 0.23
-  AOA = -4.31

Time-accurate DES
simulation

46

UH-60A Flow Solution:
Clean Fuselage

47

Drag Comparison:
Clean vs. Strut, Unstructured vs. Strand

Drag prediction comparable between
unstructured/Cartesian and Strand/
Cartesian

Available unstructured mesh is coarser
than generated strand mesh

Clean

Strut

48

Case 4: HiLift Prediction
Workshop (CRM)

Goal: compare Strand/Cartesian calculations against Unstructured results
•  Surface meshes for Strand/Cart simulation generated using CREATE A/V Capstone.
•  HiLift committee-provided volume meshes are used for unstructured calculation.

HiLift Committee Meshes

CREATE A/V Capstone
 Surface Meshes

Flap1
Flap2 Slat

Wing/Fuselage Body

49

Meshes and Domain Connectivity

50

Meshes and Domain Connectivity

51

Flow Solution

52

Pressure Coefficient Comparison

53

Pressure Coefficient Comparison

54

Pressure Coefficient Comparison

55

Pressure Coefficient Comparison

56

Pressure Coefficient Comparison

57

Pressure Coefficient Comparison

58

Pressure Coefficient Comparison

59

Pressure Coefficient Comparison

60

Case 5: UH-60A Rotor-Fuselage with
Flexible Blades and Trim

Full aero-elastic test case

All meshes are strand-based
and auto-generated

Coupled to structural dynamics
(CSD) and trim

Typical flight conditions and
configurations used by industry
designers

High speed forward flight

All options used
Moving/deforming meshes

Automatic intra-mesh and inter-
mesh holecutting

Off-body solution based AMR

61

Comparison with Baseline
Unstructured/Cartesian Predictions

Sectional Normal Force Sectional Pitching Moment

62

Effect of Fuselage

Normal Forces

Pitching Moments

Vibratory loads 2/rev and higher

Rotor
only

Rotor
only

63

•  Progress towards fully automated Strand meshing for complex
geometries
–  Closest Vertex on Isosurface of Distance IL

–  Elastic Smoothing constrained on IL

–  Strand collision problem solved via intra-mesh domain connectivity

•  Validated solution accuracy for both intersecting and non-
intersecting meshes

•  Demonstrated equivalent accuracy to unstructured methods using
auto-generated volume meshes

•  Extended simulations to realistic complex test cases

Concluding Remarks

Challenges:
•  Good surface meshes are required for good

strand mesh. Have to tie surface and volume
meshing to CAD

•  Need to understand/resolve differences
between intersecting and non-intersecting
meshes

64

Acknowledgements
Support from the HPCMP CREATE A/V program and CREATE MG
Capstone team

Future Work

•  Stress-test the method for many complex geometry problems
•  Fully automate decision logic for

–  inner/outer layer thickness
–  number of levels / level thickness

•  Validation and Verification for other known cases

65

BACKUP SLIDES

66 66

Non-intersecting

Intersecting

67

mStrand Solver

•  Accuracy commensurate with best
solutions we obtain with NSU3D

θ=14o

θ=10o

θ=6o

•  Good computational performance

Time/step approaches
structured OVERFLOW

Scalability on par with
unstructured NSU3D

Lakshminarayan et al
AIAA-2016-1581

More details

68

Comparison with Baseline
Unstructured/Cartesian Predictions

Sectional Normal Force Sectional Pitching Moment

69 69

Motivation:
Need to Amend MOSS Approach

•  Minimize top surface area at problematic locations keeping stand length constant = L
 (details in Haimes, Overset Grid Symposium, 2014)

Challenges:

•  Concave regions à deep creases
because of strand length constraint

•  Difficulty creating next strand level

70

Meshing Improvement With
CLOVIS Method

MOSS CLOVIS

Increased concavity on the outer
surface with constant length
strands

CLOVIS produces significant
improvement

How to solve CLOVIS?

closest point on IL

Surface point A

L

Isosurface IL

d1

d2 < d1

71 71

Finding the Closest point on IL

Find initial guess:

•  Follow local normal 𝒏  for L to point B

•  Find closest point on surface C

•  Repeat until convergence

•  Flush point B to isosurface
 (search along vector CB
 until distance to S = L)

Problem: For each surface point A, find P, closest point on IL

 (isosurface of distance field at L),without actually constructing the isosurface

surface pt

L

A

initial guess

C1

C3

IL L

C2

B1 = A + L 𝒏 

B2

B3

B4

72 72

•  Start from initial guess B

•  Find closest point on surface, C

•  Compute search direction
 as 𝒅  = (𝑩𝑪   × 𝑩𝑨 ) × 𝑩𝑪  

•  Take a step in direction 𝒅 

•  Re-compute closest point on surface:
 if distance up, step back and
 reduce step

•  Repeat until convergence C
Closest surface

point to B

A
surface pt

initial guess
B

P

𝒅 

Isosurface IL

Surface S

Finding the Closest point on IL

Walk on IL in a direction aligned with steepest descent

Problem: For each surface point A, find P, closest point on IL (isosurface of distance field at L),
 without actually constructing the isosurface

𝑩𝑪   × 𝑩𝑨 

73

•  Strand based domain connectivity
–  Strand mesh description (surface + vectors) is available in all processors
–  Each mesh partition searches for donors for all of its points in all strand

meshes, no communication is necessary
–  Improved scalability since all partitions have similar number of points by design
–  Still not perfectly scalable since search work/point will differ, but the imbalance

is more moderate.

Scalable Domain Connectivity

•  Traditional domain connectivity in parallel

–  For each mesh partition, find other mesh
partitions that may overlap with it (bounding
box search)

–  Send points to the other mesh partition(s) and
have it search for donors and report back
donors

à inevitably some mesh partitions will have more search load than
others and will need active load balancing that results in diminishing
returns (Roget & Sitaraman, JCP 2014)

